

TENSION STRUCTURES.

TENSION RODS | COMPRESSION STRUTS | STAINLESS CABLES CONNECTION SOLUTIONS | SITE SERVICE

Welcome

With innovation at the heart of our company ethos, Macalloy has been developing new systems and technologies in Tensile Structures since the early 1980's.

Macalloy is a proven market leader in the design, manufacture and supply of threaded bar systems. Macalloy has experience in liaising with world renowned specifiers and contractors for the development of some truly unique and pioneering structures.

Macalloy's Tension Structures range is approved with European Technical Approval – ETA 07/0215, providing the CE certification, alongside other globally recognised certifications.

Contents

Tension Rods	4
Adjustable Compression Struts	8
Macalloy Fixed End Compression Struts	9
Stainless Cables	10
Connection Solutions	12
Component Dimensions	13
Gusset Plates	14
Fork Alignment & Site Services	15

Material Properties

	- P					
Product Name	Material	Min. Yield Stress N/mm²	Min. Breaking Sress N/mm²	Min. Elongation %	Min. Charpy Impact Value J@ -20ºC	Young Modules kN/mm ²
Macalloy 460	Carbon Steel	460	610	19	27	205
Macalloy S460	Stainless Steel	460	610	15	27	205
Macalloy 520	Carbon Steel	520	690	19	27	205
Macalloy S520	Stainless Steel	520	690	15	27	205

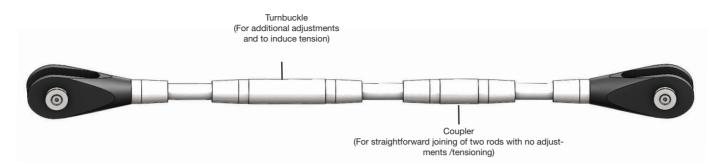
Tendon Capacities for Carbon and Stainless Macalloy 460																	
Thread	Units	M10	M12	M16	M20	M24	M30	M36	M42	M48	M56	M64	M76	M85	M90	M100	M105
Nominal Bar Dia.	mm	10	11	15	19	22	28	34	39	45	52	60	72	82	87	97	102
Min. Yield Load	kN	25	36	69	108	156	249	364	501	660	912	1204	1756	2239	2533	3172	3520
Min. Break Load	kN	33	48	91	143	207	330	483	665	875	1209	1596	2329	2969	3358	4206	4667
Design Resistance to EC3 N _{R,d}	kN	24	35	66	103	149	238	348	479	630	870	1149	1677	2138	2418	3029	3360
Nominal Bar Weight	kg/m	0.5	0.75	1.4	2.2	3.0	4.8	7.1	9.4	12.5	16.7	22.2	32	41.5	46.7	58	64.1

Tendon Capacities for Carbon and Stainless Macalloy 520																	
Thread	Units	M10	M12	M16	M20	M24	M30	M36	M42	M48	M56	M64	M76	M85	M90	M100	M105
Nominal Bar Dia.	mm	10	11	15	19	22	28	34	39	45	52	60	72	82	87	97	102
Min. Yield Load	kN	28	41	78	122	176	284	412	567	746	1031	1361	1986	2563	2863	3586	3979
Min. Break Load	kN	38	55	103	162	234	374	546	752	990	1368	1806	2635	3401	3799	4758	5279
Design Resistance to EC3 N _{R,d}	kN	27	39	74	117	168	269	393	541	713	985	1300	1897	2449	2735	3426	3801
Nominal Bar Weight	kg/m	0.5	0.75	1.4	2.2	3	4.8	7.1	9.4	12.5	16.7	22.2	32	41.5	46.7	58	64.1

M85 to M100 in stainless and M105 in both systems are not convered by ETA but are available by special request

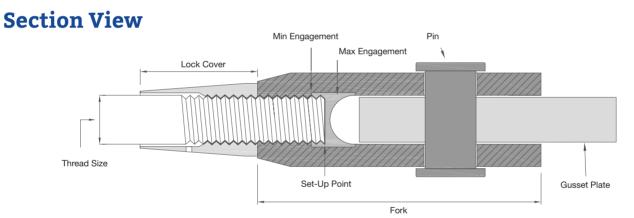
Maximum Length	of Individual Bars		
Diameter	Stainless Steel	Carbon	Galvanised
M10 - M16	6.0m	11.95m	6.0m
M20 - M30	6.0m	11.95m	8.0m
M36 - M105	6.0m	11.95m	11.95m

Longer lengths can be supplied as made to order if required.


Corrosion Protection

Carbon steel tension bars can be supplied primed and ready for an appropriate paint covering or galvanised. Galvanising can be applied prior to, or after, bar threading as required. Please note that all standard carbon Macalloy fittings (forks, pins and Lock Covers) are provided with a hot dipped galvanised coating in accordance with BS EN 1461: 2009

Fatigue

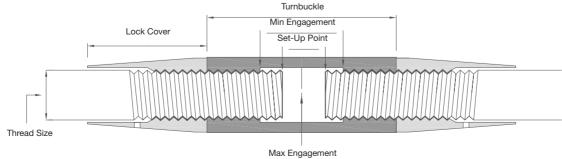

Threads are rolled on to the bar and are therefore more resistant to fatigue. Testing a range of diameters has been carried out over 2 million cycles, the results of which are available from the macalloy technical department.

Final Assembly Example

Fork Adjustment and Set Up Points

Fork Adjustment – M10 to M56: +/- ½ thread diameter in each fork end. Fork Adjustment – M64 to M100: +/- 25 mm in each fork end. Set-Up Point – M10 to M56: 1 ½ x thread diameter in each fork end. Set-Up Point – M64 to M100: 1 x thread diameter plus 25mm in each fork end.

Turnbuckle Adjustment and Set Up Points


Turnbuckle Adjustment – M10 to M24: +/- 25mm.

Turnbuckle Adjustment – M30 to M100: +/- 50mm.

Set-Up Point – M10 to M24: 1 x thread diameter +12.5mm in each end of the turnbuckle.

Set-Up Point – M30 to M100: 1 x thread diameter + 25mm in each end of the turnbuckle.

Section View

Tension Rods

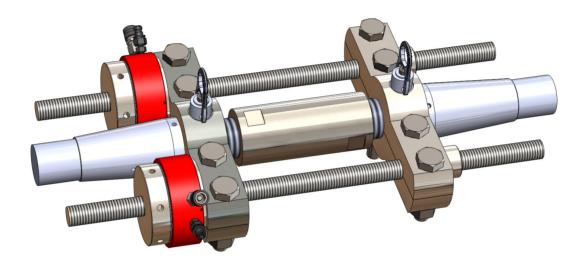
Assembly and Installation

For both pre-assembled and non-assembled tendons please follow the assembly and installation instructions to ensure correct set up points and thread engagement.

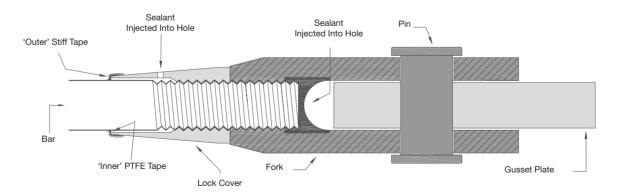
1 Note the thread direction of each bar end.

2 Screw tapered Lock Covers on to the bar as far as thread allows with taper pointing away from fork, coupler or turnbuckle.

- **3** Screw forks, turnbuckles and couplers on to bars noting set up points on page 5. Couplers should be fully engaged.
- **4** Position bar in place and secure with pins.


- 5 Where no turnbuckle is used, turn the bar to induce the load/adjustment required.
- 6 Where a turnbuckle is used turn the turnbuckle to induce the required load/adjustment
- 7 Screw Lock Covers back against forks/couplers and turnbuckles.

- 8 Seal as per fork and lock cover diagram on page 7.
- **9** Assembly and installation is complete.
- To ensure full strength of threaded joints a minimum of 1 x thread diameter should be engaged in fork/turnbuckle joints.
- Where large loads need to be induced in a tension bar the Macalloy TechnoTensioner can be used. See page 7 for more information.
- Spanner flats available on request on bars and turnbuckles, please specify at time of order.


TechnoTensioner

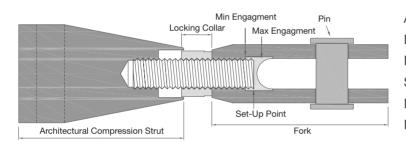
The Macalloy TechnoTensioner is hydraulic acting equipment which allows you to induce an accurate load into Macalloy tendons where a turnbuckle is used. The Macalloy TechnoTensioner works by gripping the tension bars on either side of the turnbuckle and pulling the bars together into tension thus loosening the turnbuckle. The turnbuckle can then be tightened with a strap, chain or stilson wrench.

Fork and Lock Cover Sealing

Recommended for use with all finishes to protect against vibration and corrosion. All lock covers should be sealed whether used with a fork, coupler or turnbuckle.

Fork and Lock Cover sealing method statements are available on our website and on request. If no lock cover is used, an alternative sealing method should be introduced as described in the method statement.

Capacity and I	eng	ths o	f Aro	chite	ectur	al ar	nd St	and	ard (Com	pres	sion	Stru	its			
System Ref		M12	M16	M20	M24	M30	M36	M42	M48	M56	M64	M76	M85	M90	M100		
Maximum Compressive Capacity to EN1993	kN	14.0	28.1	44.7	69.3	121.6	189.6	274.0	369.7	530.0	728.7	1063.9	1395.3	1588.6	2031.3		
Maximum Pin to Pin Length on EN1993 Standard*	mm	2369	2663	2671	3105	3357	7 3367 4498 6397 7097 7420 8188 9323 10291 11679										
Carbon CHS OD	mm	33.7	42.4	48.3	60.3	76.1	88.9 114.3 139.7 168.3 193.7 219.1 244.5 273 323.9										
Carbon CHS Wall Thickness	mm	4	5	5	5	5	5	6.3	10	10	10	12.5	16	16	16		
Stainless CHS OD	mm	33.40	42.16	48.30	60.33	73.03	Contact Macallov for details										
Stainless CHS Wall Thickness	mm	4.50	4.85	5.08	5.08	5.16											


*Maximum lengths are based on carbon steel strut taking the maximum compressive capacity. For lower compressive loads longer lengths can be used. Alternative wall thicknesses are available. Contact Macalloy for details regarding maximum length of stainless steel struts.

Compression Strut Examples

Architectural Compression Strut

Fork Adjustment and Set Up

Adjustment with each fork: M12 to M56: +/- 1/2 thread diameter M64 to M100: +/- 25mm Set-Up Point in each fork M12 to M56: 1 1/2 x thread diameter M64 to M100: 1 x thread diameter + 25mm

Corrosion Protection

Compression Struts can be supplied galvanised, or in stainless steel.

Assembly and Installation

1 Remove pins using an allen key, position the strut in place and secure with pins, tightening using an allen key.

2 Screw the locking collar in to the strut so only a small part of the locking collar is left visible, then turn the strut to the required position.

3 Screw the locking collar back against the fork. All the thread should be covered. The forks should be sealed as per the diagram on page 7.

Cap	Capacity of Macalloy Fixed End Compression Struts															
Macalloy P	Macalloy Product Ref Units 33.7 42.4 48.3 60.3 76.1 88.9 114.3 139.7 168.3 193.7 219.1 244.5 273.0 323														CSF 323.9	
Equivalent	Macalloy Fork Size		M12	M16	M20	M24	M30	M36	M42	M48	M56	M64	M76	M85	M90	M100
CHS Size	Outer Diameter	mm	33.7	42.4	48.3	60.3	76.1	88.9	114.3	139.7	168.3	193.7	219.1	244.5	273	323.9
to fit	Wall Thickness	mm	4.0	5.0	5.0	5.0	5.0	5.0	6.3	10.0	10.0	10.0	12.5	16.0	16.0	16.0
Compressi	Compressive Capacity to EN 1993		52	99	122	174	272	374	534	735	1048	1437	2127	2723	3110	3686
Gusset Pla	te Thickness	mm	10	12	15	20	22	30	35	40	45	55	70	70	80	85
Weight		kg	0.25	0.51	1.0	1.4	2.4	3.7	6.2	10.8	15.8	20.5	40.3	59.3	74.0	100.0

Macalloy CHS Fork End

Corrosion Protection

Can be galvanised and or painted and supplied in stainless steel to special order.

Assembly and Installation

1 Insert Macalloy CHS Fork End into CHS / tube, ensuring it is fully inserted and that the forks are parallel to each other.

- 2 Weld directly to CHS with full penetration butt weld and clean weld as required (ensuring forks are parallel to each other)
- 3 Position complete strut in place and secure using pins.

Architectural pins can be supplied by Macalloy. Please refer to table number 12 on page 13 for further information.

Macalloy Cl	HS Fo	rk E	nd D	ime	nsio	ns										
System Ref	ystem Ref. Units CSF 33.7 CSF 42.4 CSF 48.3 CSF 60.3 CSF CSF CSF 114.3 CSF CSF CSF CSF CSF 219.1 CSF 244.5 CSF 273.0															CSF 323.9
Fixed End Compression	A	mm	75	95	109	130	161	185	218	255	303	340	398	462	495	574
Strut Fork	G (min.)	mm	13	16	20	25	30	35	40	45	49.5	59.5	76	76	86	91
	C Dia.	mm	33.7	42.4	48.3	60.3	76.1	88.9	114.3	139.7	168.3	193.7	219.1	244.5	273	323.9
	D Dia	mm	13	17	21.5	25.5	31.5	37.5	43.5	49.5	57.5	65.5	78.5	91.5	96.5	111.5
	E	mm	22	29	34	42	52	61	70	81	97	111	132	153	162	189
	Y	mm	22	28	37	44	53	64	75	87	97.5	115.5	146	153	169	174
	Н	mm	34	45	53	64	81	93	109	123	147	169	201	236	248	289

Minimum Break Loads for Stainless Cables														
Cable Dia.		mm	4	6	8	10	12	14	16	19	22	26	28	
Macalloy Fork Size			M10	M10	M12	M16	M20	M24	M24	M30	M30	M36	M36	
7 x 19 Strand		kN	8.9	20.0	35.6	55.6	80.0	109.0	143.1	-	-	-	-	
1x 19 Strand		kN	12.6 28.2 45.5 [·]				102.0	139.0	182.0*	212.0*	285.0*	398.0*	-	
Compact Strand		kN	17.4	34.8	60.3	95.0	141.2	189.2	251.0	-	-	-	510	
7 x 19 Strand	4	8		Most Fle	xible		Lov	vest Break I	oad	Hi	Highest Stretch Characterist			
1 x 19 Strand				Rigid C	able		High Break Load				Low Stretch Characteristics			
Compact Strand			Most Rigid				Highest Break Load				Lowest Stretch Characteristics			

Stainless steel cable will begin to distort at around 50% of its breaking load. For this reason it is recommended to apply a factor of safety of 2 and not to load the cables to more than 50% of their breaking loads. *1 x 37 or 1 x 61 may also be offered.

Cable Systems - Swaged Adjustable Fork

Cable Systems - Swaged Fork / Tensioner Assembly and Installation

1 Remove pins using supplied allen key and screw Lock Covers away from tensioners as far as the thread will allow.

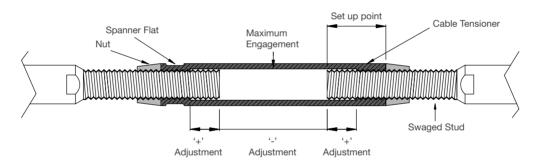
2 Position cable in place and secure with pins, tightening with supplied allen key. For Swaged fork tensioning use open ended spanner on each adjuster and simultaneously turn each one to induce load / adjustment.

3 Swaged Tensioner and Inline Tensioner Adjustment – Turn tensioner using open ended spanner until correct level of adjustment tension is achieved. Then screw Lock Covers back against the tensioners.

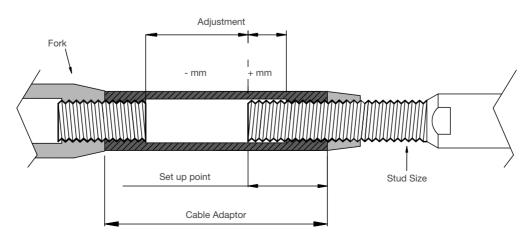
Where large loads need to be induced in a cable, a version of the Macalloy TechnoTensioner can be used. Refer to page 7 for further information.

Cable Stretch

Cables undergo an initial, permanent stretch (construction stretch). This can be between 0.10% and 0.75% dependant on the loading and type of cable. Further elastic stretch will then be proportional to the load applied and cable used. Elastic stretch can be calculated using the following formula:


$$d = \frac{\text{Load (kN) x Length (mm)}}{\text{E (kN/mm^2) x Cross Section Area (mm^2)}}$$

Cable Type	kN/mm ²
7 x 19 Strand	85
1 x 19 Strand	107
Compact Strand	133


All cables are supplied non pre-stretched, if pre-stretched cables are required please request at time of the enquiry or order.

Fork Adjustments

Fork-Cable Ada	Fork-Cable Adaptor Adjustment													
Cable Dia.	Units	4	6	8	10	12	14	16	19	22	26	28		
Fork Adjustment '+'	mm	9	14	17	22	25	31	31	38	38	45	45		
Fork Adjustment '-'	mm	19	28	33	44	49	61	61	76	76	91	91		
Set-up Point	mm	15	24	29	38	45	55	55	68	68	81	81		

Swaged Tensioner and Inline Tensioner Adjustment													
Cable Dia. Units 4 6 8 10 12 14 16 19 22 26 28													
Tensioner Adjustment '+'	mm	23	23	27	35	39	61	61	81	81	77	77	
Tensioner Adjustment '-'	mm	47	47	53	69	79	121	121	161	161	153	153	
Set-Up Point	mm	22	22	26	34	40	55	55	71	71	75	75	

Connection Solutions

Cross Coupler

Turnbuckle with Fin Plate

Min. Connection Angle 40°

Connection	

Cross Coupler

CC10

M10

73

47

12

19

LCC10

M10

29

18.5

CC12

M12

82

52

14

25

LCC12

M12

31

24

CC16

M16

105

67

18

29

LCC16

M16

37

28

Cross-Coupler

System Size

A

В

С

ØD

Ε

ØF

Lock Cover System Size

Disc Connection

Disc Connectic	/11									
Connection Disc	D/10	D/12	D/16	D/20	D/24	D/30	D/36	D/42	D/48	D/56
System Size	M10	M12	M16	M20	M24	M30	M36	M42	M48	M56
ØD	130	164	218	248	294.8	386	444	502	572	694
ØI	96	120	160	180	210	280	320	360	410	500
т	10	10	12	15	20	22	30	35	40	45
ØP	11.5	13	17	21.5	25.5	31.5	37.5	43.5	49.5	57.5
ØH (optional)	50	70	90	105	115	160	185	205	235	290

CC24

M24

148

94

26

43

LCC24

M24

74

42

CC28

M20

128

82

22

35

LCC20

M20

43

34

CC30

M30

183

117

32

52

LCC30

M30

105

51

CC36

M36

21

139

38

62

LCC36

M36

111

61

CC42

M42

249

159

44

72

LCC42

M42

117

71

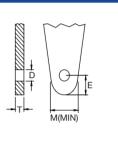
CC48	CC56	CC64	A
M48	M56	M64	
283	328	376	
181	210	242	
50	58	66	D
82	96	110	
			E
LCC48	LCC56	LCC64	
M48	M56	M64	ØF
123	136	144	
81	95	109	

Turnbuckle w	Turnbuckle with Fin Plate														
Connection Disc	D/10	D/12	D/16	D/20	D/24	D/30	D/36	D/42	D/48	D/56					
System Size	M10	M12	M16	M20	M24	M30	M36	M42	M48	M56					
ØD	130	164	218	248	294.8	386	444	502	572	694	E(MIN) Y				
ØI	96	120	160	180	210	280	320	360	410	500					
Т	10	10	12	15	20	22	30	35	40	45					
ØP	11.5	13	17	21.5	25.5	31.5	37.5	43.5	49.5	57.5					
ØH (optional)	50	70	90	105	115	160	185	205	235	290					

Bespoke connection

Bespoke connection pieces including personalisation are also available. Please contact Macalloy for further details.

Coi	mpo	nen	t Di	mer	nsior	ns											
Thread	Units	M10	M12	M16	M20	M24	M30	M36	M42	M48	M56	M64	M76	M85	M90	M100	
Fork Ref		FA/10	FA/12	FA/16	FA/20	FA/24	FA/30	FA/36	FA/42	FA/48	FA/56	FA/64	FA/76	FA/85	FA/90	FA/100	
A	mm	63.0	75.0	99.0	122.0	148.0	178.0	204.0	232.0	266.0	314.0	348.0	410.0	459.0	489.0	555.0	
G	mm	11.0	12.0	15.0	19.0	24.0	26.0	34.0	39.0	44.0	49.0	56.0	76.0	78.0	86.0	91.0	
С	mm	17.0	19.0	25.0	29.0	35.0	44.0	52.0	60.0	69.0	80.0	91.0	108.0	121.0	129.0	143.0	
D	mm	11.5	13.0	17.0	21.4	25.5	31.5	37.5	43.5	49.5	57.5	65.5	78.5	91.5	96.5	111.5	
E	mm	18.0	22.0	29.0	34.0	42.0	53.0	61.0	70.0	81.0	97.0	111.0	132.0	153.0	162.0	188.0	G Y
Y	mm	20.0	22.0	28.0	37.0	44.0	50.0	64.0	75.0	87.0	97.0	115.0	146.0	154.0	169.0	174.0	
н	mm	30.0	34.0	45.0	53.0	64.0	81.0	93.0	109.0	123.0	147.0	169.0	201.0	236.0	248.0	289.0	
Spade re	f.	SA/10	SA/12	SA/16	SA/20	SA/24	SA/30	SA/36	SA/42	SA/48	SA/56	SA/64	SA/76	SA/85	SA/90	SA/100	B
В	mm	78.0	92.0	118.0	147.0	174.0	213.0	249.0	284.0	321.0	364.0	408.0	471.0	524.0	555.0	625.0	
Т	mm	8.0	9.0	12.0	15.0	20.0	22.0	30.0	35.0	40.0	45.0	55.0	70.0	72.0	80.0	85.0	
Architec Pin Ref.	tural	PA/10	PA/12	PA/16	PA/20	PA/24	PA/30	PA/36	PA/42	PA/48	PA/56	PA/64	PA/76	PA/85	PA/90	PA/100	
P Dia.	mm	10.5	12.0	16.0	20.0	24.0	29.0	35.0	41.0	47.0	55.0	63.0	76.0	90.0	93.0	108.0	
L	mm	22.0	24.0	30.0	39.0	46.0	52.0	66.0	78.0	91.0	100.0	120.0	151.0	155.0	175.0	180.0	
Turnbuc Ref.	kle	TA/10	TA/12	TA/16	TA/20	TA/24	TA/30	TA/36	TA/42	TA/48	TA/56	TA/64	TA/76	TA/85	TA/90	TA/100	L H
ØD	mm	17.0	19.0	25.0	29.0	35.0	43.0	52.0	60.0	58.0	80.0	91.0	108.0	121.0	129.0	143.0	
с	mm	50.0	50.0	50.0	50.0	50.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	ØD ====+
L	mm	74.0	78.0	86.0	90.0	98.0	160.0	172.0	184.0	196.0	212.0	228.0	252.0	270.0	280.0	300.0	
Coupler	Ref.	CA/10	CA/12	CA/16	CA/20	CA/24	CA/30	CA/36	CA/42	CA/48	CA/56	CA/64	CA/76	CA/85	CA/90	CA/100	L
ØD	mm	17.0	19.0	25.0	29.0	35.0	43.0	52.0	60.0	68.0	80.0	91.0	108.0	121.0	129.0	143.0	øD
L	mm	25.0	29.0	37.0	45.0	53.0	65.0	77.0	89.0	101.0	117.0	133.0	157.0	175.0	185.0	205.0	<u> </u>
Lock Cov	ers	LTC/10	LTC/12	LTC/16	LTC/20	LTC/24	LTC/30	LTC/36	LTC/42	LTC/48	LTC/56	LTC/64	LTC/76	LTC/85	LTC/90	LTC/100	N
X Dia.	mm	16.5	18.5	24.0	28.0	34.0	42.0	51.0	59.0	67.0	79.0	90.0	107.0	120.0	128.0	142.0	X
N	mm	44.0	44.0	46.0	48.0	92.0	126.0	134.0	145.0	153.0	169.0	179.0	191.0	200.0	205.0	215.0	


Parliament Library

New Delhi, India Architect: Raj Rewal Associates Client: Parliament of India Gusset plates should be manufactured from material with a minimum strength of S355 to BS EN 10025 with the critical dimensions around the pin hole as per the tables below, noting the use of isolation when carbon gusset plates are used with stainless tendons.

Macallo	y Sta	and	ard	Gus	set]	Plat	e Di	mer	nsio	ns								
		M10	M12	M16	M20	M24	M30	M36	M42	M48	M56	M64	M76	M85	M90	M100	8	~~~~
T (Thickness)	mm	10	10	12	15	20	22	30	35	40	45	55	70	70	80	85		
D	mm	11.5	13	17	21.5	25.5	31.5	37.5	43.5	49.5	57.5	65.5	78.5	91.5	96.5	111.5		
E	mm	18	22	30	37	43	56	64	74	84	101	112	132	160	166	194		
H (min.)	mm	28	34	48	60	68	90	103	118	135	163	180	211	259	266	317		M(MIN)

Macalloy Gusset Plate Dimensions when used with isolation

		M10	M12	M16	M20	M24	M30	M36	M42	M48	M56	M64	M76
T (Thickness)	mm	8	9	12	15	20	22	30	35	40	45	55	70
D	mm	15.5	17.0	21.0	25.5	30.0	36.0	42.0	48.0	55.5	63.5	72.5	85.5
Е	mm	21	24	31	37	45	56	64	74	85	100	115	136
H (min.)	mm	34	38	49	58	69	89	108	117	136	160	179	210

The above dimensions should be used when connecting stainless forks to a carbon steel connection plate. This then allows space for isolation sleeves and washers. If connecting to a stainless connection plate where no isolation is required, please use dimensions in table 13.

Isolation	n Di	mer	nsioi	ns fo	or M	acal	loy	S46()					
		M10	M12	M16	M20	M24	M30	M36	M42	M48	M56	M64	M76	L ± 0.5
Isolation Sleeve		IS10	IS12	IS16	IS20	IS24	IS30	IS36	IS42	IS48	IS56	IS64	IS71	
Length	mm	9	10	13	16	21	23	31	36	41	46	55	71	
ID	mm	11.5	13.0	17.0	21.0	25.0	31.0	37.0	43.0	39.0	57.0	64.5	77.5	D II
OD	mm	14.5	16.0	20.0	24.5	29.0	35.0	41.0	47.0	54.0	62.0	71.0	84.0	
Isolation Washer	mm	IW10	IW12	IW16	IW20	IW24	IW30	IW36	IW42	IW48	IW56	IW64	IW76	
D	mm	0.5	0.5	0.5	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	ID OD ± 0.5
OD	mm	26	30	41	46	57	74	83	98	110	135	155	190	

Whitelee Wind Farm,

Eaglesham Moor, UK Architect: Hypostyle Contractor: Morrison Construction

Fork / Gusset Plate Misalignment

Forks should be kept in plane and parallel to each other on all Macalloy Tension Structure Systems.

Use of horizontal gusset plates should be avoided to prevent loads in gusset plates due to bar weight.

The standard Macalloy fork allows for misalignment between gusset plates of up to 0.5°. Where greater adjustment is required or there is potential movement exceeding 0.5°, larger forks can be put on the bar or strut and a spherical bearing can be inserted providing up to 5.9° of misalignment / movement.

Macalloy Site Services

Site support – Macalloy site services personnel can provide on site support in the form of undertaking stressing, training local personnel and providing supervision.

Equipment Hire – Macalloy Site services can provide a range of equipment to assist with the installation of tension bars including hydraulic jacks, Macalloy TechnoTensioner, strap and chain wrenches and strain gauges.

Standard Arrangement

Additional misalignment with spherical bearing

Bespoke Systems

Macalloy can supply a range of special items, including but not limited to:

- Higher strength tension bar up to 690 N/mm² minimum yield strength
- Larger diameter tension bars
- Bespoke cast and fabricated connection pieces
- Spade Connections
- •Oversized forks or spades on smaller diameter bars, cables or struts

Engineering Support

Macalloy engineering team can provide support and advice on a range of issues including fire protection, thermal expansion, installation/stressing and managing misalignment and movement.

University of Minnesota USA Architects: HGA, KPF

Troja Bridge

Czech Republic Steel Work Designer - Excon Steel Main Contractor - Metrostav

Dubai Airport UAE Engineer: Dar Al-Handasah Client: Josef Gartner

Mbombela Stadium

Nelspruit South Africa Client - Mbombela Local Municipality Structural Engineer - Mott MacDonald

Macalloy, Caxton Way, Dinnington, Sheffield, S25 3QE, U.K. T: +44 (0)1909 519200 | W: www.macalloy.com | E: sales@macalloy.com